
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 4: Threads

 Overview

 Multicore Programming

 Multithreading Models

 Thread Libraries

 Implicit Threading

 Threading Issues

 Operating System Examples

4.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To introduce the notion of a thread—a fundamental unit of CPU

utilization that forms the basis of multithreaded computer

systems

 To discuss the APIs for the Pthreads, Windows, and Java

thread libraries

 To explore several strategies that provide implicit threading

 To examine issues related to multithreaded programming

 To cover operating system support for threads in Windows and

Linux

4.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

4.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreaded Server Architecture

4.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Benefits

 Responsiveness

 may allow continued execution if part of process is blocked

 especially important for user interfaces

 Resource Sharing

 threads share resources of process: easier than shared

memory or message passing

 Economy

 Thread creation is faster than process creation

 Less new resources needed vs a new process

 Solaris: 30x faster

 Thread switching lower overhead than context switching

 5x faster

 Scalability

 Threads can run in parallel on many cores

4.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming

 Multicore or multiprocessor systems

 Putting pressure on programmers

 How to load all of them for efficiency

 Challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

4.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Concurrency vs. Parallelism

 Concurrent execution on single-core system

 Parallelism on a multi-core system:

 Parallelism implies a system can perform more than one task

simultaneously

 Concurrency supports more than one task making progress

 True parallelism or an illusion of parallelism

 Single processor / core, scheduler providing concurrency

4.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming (Cont.)

 Types of parallelism

 Data parallelism – distributes subsets of the same data across

multiple cores, same operation/task on each

 Example: the task of incrementing elements by one of an array can

be split into two: incrementing its elements in the 1st and 2nd halfs

 Task parallelism – distributing threads across cores, each thread

performing unique operation

 In practice, people often follow a hybrid of the two

 Architectural support for threading grows

 CPUs have cores as well as hardware threads

 N hardware threads per core

– Means N threads can be loaded into the core for fast switching.

 Consider Oracle SPARC T4:

 8 cores

 8 hardware threads per core

4.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single and Multithreaded Processes

4.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

User Threads and Kernel Threads

 User threads

 Support provided at the user-level

 Managed above the kernel

 without kernel support

 Management is done by thread library

 Three primary thread libraries:

 POSIX Pthreads, Windows threads, Java threads

 Kernel threads

 Supported and managed by OS

 Virtually all modern general-purpose operating systems support them

4.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreading Models

 A relationship exists between user threads and kernel threads

 Three common ways of establishing this relationships

 Many-to-One model

 One-to-One model

 Many-to-Many model

4.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-One

 Many user-level threads mapped to single kernel

thread

 Advantage:

 Thread management in user space

 Hence, efficient

 Disadvantages:

 One thread blocking causes all to block

 Multiple threads may not run in parallel on

multicore system

 Since only 1 may be in kernel at a time

 So, few systems currently use this model

4.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

One-to-One

 Each user-level thread maps to kernel

thread

 Creating a user-level thread creates a

kernel thread

 Advantages:

 More concurrency than many-to-one

 Disadvantages:

 High overhead of creating kernel

threads

 Hence, number of threads per

process sometimes restricted

 Examples

 Windows

 Linux

 Solaris 9 and later

4.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-Many Model

 Allows many user-level threads to be

mapped to (smaller or equal number of)

kernel threads

 Allows the OS to create a sufficient number

of kernel threads

 The number is dependent on specific

machine or application

 It can be adjusted dynamically

 Many-to-one

 Any number of threads is allowed, but

low concurrency

 One-to-one

 Great concurrency, but the number of

threads is limited

 Many-to-many

 Gets rid of the shortcomings of the

precious two

4.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two-level Model

 Similar to Many-to-Many,

 Except that it allows a user thread to be bound to

kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

4.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thread Libraries

 Thread library provides programmer with API for creating

and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

 Examples of thread libraries

 Pthreads, Java Threads, Widnows threads

4.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Many other issues (we will not consider their details)

 Signal handling

 Synchronous and asynchronous

 Thread cancellation of target thread

 Asynchronous or deferred

 Thread-local storage

 Scheduler Activations

4.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semantics of fork() and exec()

 Does fork()duplicate only the calling thread or all

threads?

 Some UNIXes have two versions of fork

 exec() usually works as normal – replace the running

process including all threads

4.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Lightweight process

 Lightweight Process (LWP)

 An intermediate data structure between user

and kernel threads

 To user-level thread library, it appears as a

virtual processor on which process can

schedule user thread to run

 Each LWP attached to a kernel thread

 LWP are used, for example, to implement

Many-to-many and two-level models

4.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Examples

 Windows Threads

 Linux Threads

4.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the

parent task (process)

 Flags control behavior

 struct task_struct points to process data structures

(shared or unique)

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 4

